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Abstract-In this paper we consider an extension of the classical bending theory of thin plates
including the effects of mcehnnical dissipation. The resulting differential equation is solved for the
case of circular plates with free edges. We obtain results giving the attenuation c:oefticients and
frequencies of the natural modes of vibration of the plates. The results indicate, in particular, that
when the instantaneous and equilibrium Poisson's ratios are different the values of the attenuation
coefficients depend on the mode shapes, which we believe are consistent with physical notions.
Otherwise, the values of the attenuation coefficients are the same for all mode shapes for a given
set of material parameters.

1.INTRODUcnON

The occurrence of a mechanical resonance ofa vibrating structure at a particular frequency
is usually recognized experimentally by the divergence of the mechanical displacement at
that frequency. For a structure with mechanical dissipation the divergence of the
displacement is also accompanied by a phase shift of the displacement with respect to the
driving stimulus.t The solution of the second-order differential equation describing the
responses of the forced vibration of a mass-spring-damper system exhibits characteristics
consistent with experimental observations. The classical bending theory of thin elastic
plates due to Lagrange seems to predict fairly satisfactorily the flexural resonant frequencies
and the nodal systems of such plates, but we are not aware of an extension of the theory
which includes the influence of mechanical dissipation giving the attenuation coefficients
and frequencies of the natural modes.'There are, ofcourse, numerous papers in the literature
dealing with the subject of mechanical dissipation. For instance, the paper by Ross et al.
[3J gives the damping effects of viscoelastic layers on plate structures. Many of the papers
cited in Ref. [3J deal with similar subjects.

In this paper we consider an extension of the classical bending theory of thin plates
including the influence of mechanical dissipation. We also include the effects of rotary
inertia but not those of transverse shear.t In particular, we consider standing-wave solutions
of the governing differential equation giving the attenuation coefficients and the frequencies
associated with various natural modes of circular plates with free edges. As we shall see,
the solution procedure requires the evaluation of Bessel functions with complex arguments.
The code for this purpose has been developed quite recently at Sandia National Laboratories
and is not generally available.

2. CONSTITUTIVE RELATIONS AND THE GOVERNING DIFFERENTIAL EQUATION

To begin with, let the x-y plane denote the middle surface of the plate which has
thickness h. Let w denote the displacement component in the normal direction z to the

t Numerous experimental results are cited in the comprehensive report by Leiua[l]. Cherl[2] gives
quantitative results based on IiImIltaneous measurements or the displacements or oppoaite surface points of
electrically forced ftexural mechanical resonant mode shapes or a circular diIc: of PLZr7/6S/3S, a ferroelectric
ceramic. The natural modes are exhibited by the quadrature components or the displacements.

~ Transverse shear involves the introduction of an added parameter IC, Mindlin[4], whose value is auignable
based on comparison with other results. Its inclusion in the current consideration woukl add complications in
the numerical procedure depending on the value of IC. As it tu.ms out, the efI'ecta or rotary inertia are nqligib1e
with regard to the results given in this paper. We suspect that this will also be the case for transverse shear.
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middle surface. The stress components (1x' (1y and (1xy in terms of the strain components
ex, ey and exy are given by

(1)

where E and v are the instantaneous Young's modulus and Poisson's ratio, respectively.
(1~, (1~ and (1~y obey the rate lawst

'T T E ( -)(1x - rx.qx = ----2 ex + vey
1 - v

'T T E ( -)(1y - rx.q., = -1-2 e., + vex
-v

(2)

where rx. is required to be negative, and E and vare constants. Let Ee and Ve denote the
equilibrium Young's modulus and Poisson's ratio. It follows from eqns (1)1 and (2)1 that
at equilibrium we must have

Ee E E
1 - v~ = 1 - v2 - rx.(1 - v2)

Eeve Ev Ev
1 - v~ = 1 - v2 - rx.(1 - v2)

which in turn implies that

1 - Ve Ee 1 - vEl - y E
-2-1 - v~ =-2-1 - v2 - -2-rx.(1- y2)'

(3)

(4)

The system of eqns (1) and (2) may be regarded as the constitutive relations of a thin
viscoelastic plate with

1
t= -

rx.
(5)

being the relaxation time.
Given the preceding constitutive relations it is possible to show that the classical

t Equations (1) and (2) are entirely equivalent to the usual inlell'," forms of linear viscoelasticity. In general,
eqns (1) and (2) are much easier to solve numerically.
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notion of bending theoryt and the equations of balance of linear momentum imply that,
in the absence of surface traction and body force, the displacement component w which is
a function of (x, y, t) obeys the differential equation

(6)

where V· is the biharmonic operator in (x, y), p is the mass density of the plate material,
and

(7)

The governing differential equation, eqn (6), readily reduces to the classical equation of
thin elastic plates, i.e. by simply deleting the term containing the integral.

In addition to the differential equation, eqn (6), we need to specify the appropriate
boundary conditions. For a circular plate with a free edge and in terms of polar coordinates
(r, e, z), we have

M. =0 at r =a

1 0
Q + - - M.a = 0 at r = a• roe "'

where a is the radius of the plate, and

[

12

M. = O'.zdz
-/t/2

[

12

M,., = O'"zdz
-/t/2

tScc, e.g. Rcismann and Pawlik[SJ, Chap. 6.

(8)
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3. STANDING·WAVE SOLUTIONS

OUf aim is to find a solution of the axial component w of the displacement as a
function of (r, e, t). Let

w = lttg

with

(9)

ltt = ltt(r, e~

and define the function G via the relation

g =g(t) (10)

G(t) = flO e«(I-f)g(t)dt

so that

G- rxG = g.

Substitution of the preceding into the governing differential equation yields

We may take this constant to be of the form

where k is, in general, a complex constant which is to be determined.
By eqns (13) and (14), we have, in particular

which may be rewritten in the form

(Vz + k~)(VZ - k:')ltt =0

with

(11)

(12)

(13)

(14)

(15)

(16)
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Solutions W(r,8) of the differential equation, eqn (15), which are finite as r = 0 include

w= {AJ,,(k+r) + BI,,(Lr)} cos n8 (17)

where J" and I" are Bessel functions, A and B are, in general, complex constants, and n is,
of course, an integer.

Given eqns (9), (11), (12) and (17), boundary conditions (8) become

-1E 2(Ap" + Bq,,)g + 1 E -2 (Ap" + Bq,,)G = 0 (18)
- v - v

where

a2p" = (v - 1Xk+aJ~(k+a) - n2J,,(k+a)) - k~a2J,,(k+a)

a2q" = (v - 1XLaI~(La) - n2I,,(La» + Ea2I,,(La)

a3f.. = n2(v - 1Xk+aJ~(k+a) - J,,(k+a» - k~a3J~(k+a)

a3h" = n2(v - 1XLaI~(La) -1,,(La» + k~a31~(La)

and

a2p" = (v - 1Xk+aJ~(k+a) - n2J,,(k+a» - k~a2J,,(k+a)

a2q" = (v - 1XLaI~(La) - n2I,,(k_a» + Ea2I,,(La)

a31.. = n2(v - 1Xk+aJ~(k+a) - J,,(k+a» - k~a3J~(k+a)

a31i" = n2(v - rXLal~(La) - I,,(La» + k~a3I~(La).

Equation (18) implies that we have the requirement

!=c
G

where C is, in general, a complex constant. Now let

(20)

(21)

where e is a complex constant which is to be determined. It follows from eqn (11) that

1
G=--e"

e-ex

provided that

Re(e - ex) > O.

Equation (22) satisfies requirement (20). By eqns (13) and (14), we have, in particular

(22)

(23)

(24)
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which together with eqns (21) and (22) yields

k
4

( - )e2 +_ D+~ =0.
ph e - (X

(25)

That is, f. must be a root of this cubic equation. Further, boundary conditions (18) and
(19) reduce to

(26)

E E
-1-2 (Af" + BhnXe - (X) + ---2 (AJ" + Blin)- v 1 - v

For the sake of brevity, eqns (26) and (27) may be rewritten in the forms

AC1 +BC2 =0

AD l + BD2 = 0 (28)

where Cl , C2 , Dl and D2 are appropriately defined quantities. It follows that we must
have

(29)

in order to satisfy the boundary conditions.
A standing-wave solution of the differential equation (6) and boundary conditions (8)

is, therefore, of the form

(30)

It entails the determination of the values of e and k such that eqns (25) and (29) are satisfied.
The complex constants A and B are then determined via eqns (28). Since only the ratio of
these constants is unique, it is not possible to dctermine the absolute magnitude of w. The
nodal system of a natural mode of vibration is given by the loci of the zeros of w. For a
particular mode, the real part of e gives the attenuation coefficicnt, and its imaginary part
is the angular frequency. It should be noted that the solution is valid only if inequality
(23) is satisfied.

4. SOME REMARKS ON THE NUMERICAL TECHNIQUE

The code required to solve the problem is fairly complex. Its details are beyond the
scope of this paper. We shall, however, outline the essential steps of its algorithm.

For a given nodal system, we pick a complex number for the value of k and determine
the threc roots ei, i = 1, 2, 3, of the cubic eqn (25). For a given pair (k, e.) of numbers we
evaluate the appropriately defined quantities Cit C2 , D l and D2 • This process is repeated
until boundary conditions (26) and (27) are satisfied, or equivalcntly eqn (29) is satisfied.
If eqn (29) is satisfied for thc given pair, thcn wc examinc whcthcr each of thc othcr two
pairs of (k, £.) for thc same k also satisfy eqn (29) or not. If a givcn pair (Ie, £.) does not
satisfy eqn (29), then we repeat the process for a different pair until wc find the pair which
does.

Given the complcxities of the problem and the inherent inaccuracies of numerical
computations, it would be difficult to satisfy eqn (29) identically. Thcrcfore, we compute
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the values of the real and imaginary parts of the products C\D 2 and C2D\. Equation (29)
is s/lid to be satisfied if both the differences

and

are minimized in magnitude. On many occasions we encounter situations when either one
or the other condition is satisfied but not both. Such situations are discarded as possible
solutions.

The evaluation of the quantities Cl> C2 , D 1 and D2 requires the evaluation of Bessel
functions with complex arguments. The algorithm and the code necessa!'y for this purpose
have only been recently developed by our colleague D. E. Amos here at Sandia National
Laboratories. The associated paper of this development will be published in the near future.

5. NUMERICAL RESULTS

We now give the results of our computations. For our present purposes, we consider
a circular plate with dimensions a = 1.09 and h =0.02. The material properties of the plate
are completely specified by the mass density p, the instantaneous Young's modulus E and
Poisson's ratio v, and the equilibrium Young's modulus Ec and Poisson's ratio Vc ' The
quantity IX is regarded as an assignable constant. Based on physical grounds, we require
that

Ec E
--<--
1 - v; 1 - v2

Ecvc Ev
--<--
1 - v; 1 - v2

I-v E I-v E__c __c_ < _
2 1 - v; 2 1 - v2 '

Note that if

Ec < E and Vc = v

then the above conditions are always satisfied. On the other hand, if

Ec < E and vc :;: V

(31)

(32)

then the above conditions place certain restrictions on the relative magnitudes of the
material properties. Based on considerations in the three-dimensional context we must
require that Ec is always less than E.

As it turns out, there are two classes of solutions depending entirely on whether
condition (31) is satisfied or condition (32) is satisfied. The two classes of solutions are
quite different. Therefore, we shall present the results of each class separately.

When condition (31) is satisfied, the value of k turns out to be real. The solution of
the cubic equation (25) yields a real root and two complex roots. The real parts of the
three roots are negative, and the two complex roots are complex conjugates. Let £0 denote
the real root, and let £1 and £1 denote the complex roots. All three pairs, i.e. (k,so), (k,SI)
and (k, £1), satisfy the boundary conditions in the sense of eqn (29). This means that for a
given nodal system there are two possible solutions, namely the solution corresponding to
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Table 1

s,n l< FREQUENCY s,n k FR~UENCY

1,0 2.762~ 7.8891xl03 0,3 3.2098 l,0651XI0~

2,0 5.6907 3.3~79xI0~ 1,3 6.6705 ij.6001XIO~

3,0 8.5901 7.6285xI0ij 2,3 9.6952 9.7176xl0ij

~,O 11. ~75 1. 36111xl05 3.3 12.6ij8 1.6538xI05

5.0 111.351 2. 1291xl05 11.3 15.566 2.50118xl05

1,1 11.15112 1.78111x1011 5.3 18.461 3.5233xl05

2,1 7.0939 5.2025x104 0,11 11.2557 1.8723x104

3,1 9.9977 1.0333x105 1.11 7.85311 6,3762xI011

~,1 12.885 1.7l611xl05 2,11 10.931 1. 23511x10S

5,1 15.761 2.5682xl05 3,11 13.916 2.002Oxl0S

0.2 2.10113 1I.5779x103 ll,lI 16.8SlI 2.9368xIOS

1.2 S.1I1143 3.06~3xl011 5,11 19.7611 li.0382xl05

8.11206 7.3303XIOli 0,5
:' U

2,2 5.2735 2.8750xI0

3,2 l1.3115 1.3306xl05 1,5 9.00119 8.3830xl0u

~,2 lU.211S 2.0978xlO5 2,5 12.138 1.523lx105

5,2 17 .129 3.0332xl05 3,5 lS.155 2.37115xl0S

I
11,5 18.117 3.393lx105

5.5 21.01l2 1I.57Bx105

the root &0' and the solution corresponding to the complex conjugate roots &1 and t1.t

The real part of either &1 or t 1 gives the attenuation coefficient, and the corresponding
imaginary part gives the angular frequency of the given nodal system.

Let s denote the number of nodal rings, and let n denote the number of nodal
diameters. For the example

E = 3 X 1010
, Ee = 2.6 X 1010

,

V = Ve =0.33, p = 1.05
and for

ex = -100

we obtain for the (1,0) mode, i.e. s = 1 and n =0

k = 2.76244836 + i 1.08708235 X 10- 16

&0 = - 86.66827563 + i 7.304885779 x 10- 11

&1 = -6.665862186 + i7.889078539 x 103

£1= -6.665862186 - i7.889078539 x 103.

The preceding computed values clearly illustrate that k and &0 are real, and 81 and 61 are
complex conjugates. In Table I, we list the values of k and the angular frequencies of the
various modes computed for the particular example. The attenuation coefficients do not

t The solution corresponding to the root 60 is nonoscillatory. Henceforth, we shall only give the results
corresponding to the oscillatory solution.
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Table 2

Ee ATTENUATION

1. 6xlO lO -23.333

1.8xlO lO -20.000

2.0xlO lO -16.667

2.2xlO lO -13.333

2.4xlO lO -10.000

2.6xlO lO - 6.6667

2.7xlO lO - 5.0000

2.8xlO lO - 3.3333

3.0XI0 10 0

Table 3

Q ATTENUATION

- 1 - 0.05000

-10 - 0.50000

-102 - 5.0000

-10 3 -50.000

-10 4 - 4.9936xI0 2

-105 - 4.4151XI03

change very much at all for the various modes. They vary from - 6.6643 to - 6.6667; the
latter holds for the majority of the modes except for those of low frequencies. In addition,
it may be readily verified that the values of k and the frequencies are in close agreement
with those obtained via the corresponding elastic bending theory of thin plates, see e.g.
Cowell and Hardy[6].

The values of the attenuation coefficient depend on the values of E. and (x, For the
example

E = 3 X 1010,

P = 1.05,

v= v. =0.33,

IX = -100

we list in Table 2 the values of the attenuation coefficient vs E. for, say, the (5,5) mode.
In addition, for the example

E = 3 X 1010,

V =v. =0.33,

E. = 2.7 X 1010,

P = 1.05

we list in Table 3 the values of the attenuation coefficient vs IX for, say, the (4,3) mode. It
is of interest to note that these results are in keeping with physical notions. As E. tends
to E or as (X tends to zero (equivalently the relaxation time t, defined by eqn (5), tends to
infinity) the material of the plate is said to exhibit less and less mechanical dissipation,
and, therefore, the value of the attenuation coefficient tends to zero. It should also be noted
that for the values of E. and (X of the preceding examples there does not seem to be any
change in the value of k. The largest change in the frequency due to the values of E. is a
decrease in the fifth significant figure of the (0,2) mode at E. = 1.6 X 1010. At IX = _lOS,
the values of the frequency decrease from a high of slightly over 5% for the (0,2) mode to
a low of within 1% for the (5,5) mode.
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Table 4

ATTENUATION COEFFICIENTS, ve"0.301

~ 0 1 2 3 ~ 5

0 -ij.3153 -ij.5232 -ij.6515 -ij.7513

1 -6.6215 -6.06~6 -5.8631 -5.7657 -5.71ij2 -5.6855

2 -6.0ij60 -5.9729 -5.9155 -5.87ij1 -5.8ijij3 -5.8227

3 -5.9660 -5.9~21 -5.9183 -5.8978 -5.8809 -5.8671

ij -5.9391 -5.928ij -5.9163 -5.9052 -5.89ij5 -5.8855

5 -5.9268 -5.9212 -S.91ij2 -S.9071 -S.900ij -5.89ij1

The preceding results correspond to examples which obey condition (31), namely the
instantaneous and equilibrium Poisson's ratios are equal. Physically, we expect that the
Poisson's ratios are unequal so that condition (31) is a special case which serves to illustrate
some of the nature of the solutions.

Solutions of examples obeying condition (32) turn out to be most interesting. In
general, the values of k for the various modes are complex, and the solution of the cubic
eqn (25) yields a real root 80 and two complex roots 8i' j = 1,2, which are not complex
conjugates. Further, only one of the three pairs, say (k, £d, satisfies the boundary conditions
in the sense of eqn (29).t In this situation, there is no non-oscillatory solution. The real
parts of k and the imaginary parts of 81 (i.e. the angular frequencies) are equal to the
corresponding values given in Table 1. However, the real parts of £1 now depend on the
nodal systems. In other words, the values of the attenuation coefficient are different for
different modes.

Occasionally, when the value of lI. is close to that of lI, we encounter situations for
which k is nearly real and the two complex roots are nearly complex conjugates whose
real parts agree to within four or five significant figures. In these situations we pick the
root which satisfies the boundary conditions the best as the solution of a given nodal
system. It should be noted that the pair (k, £0) still does not satisfy the boundary conditions.
Here again, there is only one solution.

Consider the example

E = 3 X 1010
,

II = 0.33,

IX = -1.00.

E. = 2.7 X 1010
,

p:: 1.05,

In Tables 4 and 5 we list, respectively, the real parts of 81 , Le. the attenuation coefficients,
for lI. = 0.301 and 0.35. We should note that when lI. = 0.301 the value of k of the (4,3)
mode is nearly real, and when lI. = 0.35 the values of k of the (0,2), (4,3) and (5,3) modes
are nearly real. It should also be noted that we are not able to satisfy the boundary
conditions very well for the (0,2) mode in the latter situation, the imaginary part of eqn
(29) is zero to within 2%.

Acknow~dgment-This work performed at Sandia National Laboratories was supported by the U.S. Department
or Energy under contract number DE-AC04-DP7600789.

t The conjugate pair (f, £1) is also a solution or the problem.
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Table 5

ATTENUATION COEFFICIENTS, \le"0.3,

~ 0 1 2 3 II 5

0 -11.3009 -5.3008 -5.2019 -5.1261

1 -3.8521 -11.1887 -11.3328 -11.110211 -11.11393 -11.11598

2 -11.2021 -11.251111 -11.29511 -11.3250 -11.31163 -11.3618

3 -11.2593 -11.27611 -11.29311 -11.3080 -11.3201 -11.3300

II -11.2785 -11.2862 -11.29118 -11.3029 -11.3105 -11.3038

5 -11.2873 -11.29111 -11.2963 -11.3018 -11.3062 -11.3107
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